
Automatic Synthesis and Fault-Tolerant Experiments on 
an Evolvable Hardware Platform=1 

 
Adrian Stoica, Didier Keymeulen, V. Duong and C. Salazar-Lazaro  

Jet Propulsion Laboratory 
California Institute of Technology 

4800 Oak Grove Drive 
Pasadena, CA 91109 

818-354-2190 
adrian.stoica@jpl.nasa.gov 

    

                                                        
= In Proceedings of the IEEE Aerospace Conference, March 18-25, 2000, Big Sky, MT, USA. 
1 0-7803-5846-5/00/$10.00 © 2000 IEEE 

Abstract—  Outer solar system exploration and missions to 
comets and planets with severe environmental conditions 
require long-term survivability of space systems. This 
challenge has recently been approached with new ideas, 
such as using mechanisms for hardware adaptation inspired 
from biology. The application of evolution-inspired 
formalisms to hardware design and self-configuration lead 
to the concept of evolvable hardware (EHW). EHW refers 
to self-reconfiguration of electronic hardware by 
evolutionary/genetic reconfiguration mechanisms. The 
paper describes a fine-grained Field Programmable 
Transistor Array (FPTA) architecture for reconfigurable 
hardware, and its implementation on a VLSI chip. A first 
experiment illustrates automatic synthesis of electronic 
circuits through evolutionary design with the chip-in-the-
loop. The chip is rapidly reconfigured to evaluate candidate 
circuit designs. A second, fault-tolerance experiment shows 
how evolutionary algorithms can recover functionality after 
being subjected to faults, by finding new circuit 
configurations that circumvent the faults. 
 
 TABLE OF CONTENTS 

 1. INTRODUCTION 
 2. TOWARD EVOLUTION-ORIENTED CHIPS 
 3. TEST BED FOR EVOLUTIONARY EXPERIMENTS 
 4. AUTOMATIC SYNTHESIS OF A NEW FUNCTION 
 5. A SELF-HEALING EXPERIMENT 

6. LESSONS LEARNED 
7. CONCLUSION 

 
 1. INTRODUCTION 

Long-term survivability of space systems, as required, for 
example, by outer solar system exploration and missions to 
comets and planets with severe environmental conditions, 
has recently been approached with new ideas, such as the 
use of biology-inspired mechanisms for hardware 
adaptation. The application of evolution-inspired 
formalisms to hardware design and self-configuration lead 
to the concept of evolvable hardware (EHW). In the narrow 

sense EHW refers to self-reconfiguration of electronic 
hardware by evolutionary/genetic reconfiguration 
mechanisms. In a broader sense, EHW refers to various 
forms of hardware, from sensors and antennas to complete 
evolvable space systems that could adapt to changing 
environments and, moreover, increase their performance 
during the mission. 
 
There are two main benefits EHW can bring to spacecraft 
survivability. Firstly, EHW can help preserving existing 
functions, in conditions where hardware is subject to faults, 
aging, temperature drifts and radiation, etc. Secondly, new 
functions can be generated  (more precisely new hardware 
configurations can be synthesized to provide required 
functionality) when needed. 
 
This paper reports on experiments that illustrate how 
evolutionary algorithms can design analog and digital 
circuits and recover functionality when lost due to faults, by 
finding new circuit configurations that circumvent the 
faults. The search for an electronic circuit realization of a 
desired transfer characteristic can be made in software as in 
extrinsic evolution, or in hardware as in intrinsic evolution. 
In extrinsic evolution the final solution is downloaded to 
(or becomes a blueprint for) the hardware. In  intrinsic 
evolution the hardware actively participates in the circuit 
evolutionary process and is the support on which candidate 
solutions are evaluated. 
  
A variety of circuits have been synthesized through 
evolutionary means. For example, Koza used Genetic 
Programming (GP) to grow an “embryonic” circuit to one 
that satisfies desired requirements [1]. This approach was 
used for evolving a variety of circuits, including filters and 
computational circuits. An alternative encoding technique 
for analog circuit synthesis, which has the advantage of 
reduced computational load was used by Lohn and 
Colombano[2] for automated filter design. On-chip 
evolution was demonstrated by Thompson [3] using an 
Field Programmable Gate Array (FPGA) as the 
programmable device, and a Genetic Algorithm (GA) as 



the evolutionary mechanism. More details on current work 
in evolvable hardware are found in [4-7]. Evolutions of 
analog circuits reported in [1] and [2] were performed in 
simulations without concern for a physical implementation. 
It shows that evolution can lead to circuit designs that 
compete, or even exceed in performance those of humans. 
Current programmable analog devices are very limited in 
capabilities and do not support the implementation of the 
resulted design (but, in principle, one can test their validity 
in circuits built from discrete components, or in an ASIC 
(Application Specific Integrated Circuit)). More recently, 
evolutionary experiments were performed on Field 
Programmable Analog Arrays [18] and ASIC [11].  
 
There is another characteristic that makes electronic 
devices an attractive domain for applying evolution; the 
possibility to produce electronic systems that are inherently 
insensitive to faults such as silicon defects by using 
evolution in hardware to design fault-tolerant or highly 
reliable systems. The evolution is even able to self-repair 
on-line by exploiting defective components as if they were 
working parts [15-16]. 
 
This paper is organized as follows: Section 2 presents an 
evolution-oriented architecture for reconfigurable hardware 
based on the concept of Field Programmable Transistor 
Array.  Section 3 presents the experimental setup, 
including details of the evolutionary design tool, the FPTA 
chip and the hardware evaluation board. Section 4 presents 
automatic synthesis of an electronic circuit by intrinsic 
evolution (on FPTA chips). Section 5 describes a fault-
tolerant experiment in which functionality is recovered 
after a fault. Section 6 presents some lessons learned from 
the experiments and section 7 concludes the paper. 
 

2. TOWARD EVOLUTION-ORIENTED CHIPS 

In the context of electronic synthesis on reconfigurable 
devices, the architectural configurations are encoded in 
"chromosomes" that define the state of the switches 
connecting elements in the reconfigurable hardware. The 
main steps in evolutionary synthesis of electronic circuits 
are the following. First, a population of chromosomes is 
randomly generated to represent a pool of circuit 
architectures. The chromosomes are converted into circuit 
models (for extrinsic EHW) or control bitstrings 
downloaded to programmable hardware (intrinsic EHW). 
Circuit responses are compared against specifications of a 
target response and individuals are ranked based on how 
close they come to satisfying it. Preparation for a new 
iteration loop involves generation of a new population of 
individuals from the pool of the best individuals in the 
previous generation. Here, some individuals are taken as 
they were and some are modified by genetic operators, such 
as chromosome crossover and mutation. The process is 
repeated for a number of generations, resulting in 
increasingly better individuals. The process is usually 

ended after a given number of generations, or when the 
closeness to the target response has been reached.  In 
practice, one or several solutions may be found among the 
individuals of the last generation. 
 
Current efforts in the evolution of hardware have been 
limited to simple circuits [5]. For experiments with digital 
circuits, this limitation may be caused by a lack of power of 
evolutionary techniques in such search spaces. For analog 
circuits the limitation appears to come from a lack of 
appropriate reconfigurable analog devices to support the 
search. This precludes searches directly in hardware and 
requires evolving on hardware models. Such models require 
evaluation with circuit simulators such as SPICE; the 
simulators need to solve differential equations and, for 
anything beyond simple circuits, they require too much 
time for practical searches of millions of circuit solutions. 
A hardware implementation offers a big advantage in 
evaluation time for a circuit; the time for evaluation is 
determined by the goal function. For example, considering 
an A/D converter operating at a 100 kHz sampling rate the 
electronic response of the A/D converter is available within 
10 microseconds, compared to (an over-optimistic) 1 
second on a fast computer running SPICE; this advantage 
increases with the complexity of the circuits. In this case 
the 105 speedup would allow evaluations of populations of 
millions of individuals in seconds instead of days.  
 
Most reconfigurable devices are digital, and while several 
levels of granularity are in use, the most common ones are 
configurable at the gate-level. In the analog programmable 
devices the reconfigurable active elements are Operational 
Amplifiers, such as in Field Programmable Analog Arrays 
(FPAA) with only very coarse granularity and few 
programmable components, allowing specified functionality 
with good precision, having a limited range of possible 
EHW experiments. The optimal choice of elementary block 
type and granularity is task dependent. At least for 
experimental work in evolvable hardware, it appears a good 
choice to build reconfigurable hardware based on elements 
of the lowest level of granularity. Virtual higher-level 
building blocks can be considered by imposing 
programming constraints. An example of this would entail 
forcing groups of elementary cells to act as a whole (e.g. 
certain parts of their configuration bitstrings with the 
interconnections for the N transistors implementing a 
NAND would be frozen). Ideally, the “virtual blocks” for 
evolution should be automatically defined/clustered during 
evolution (an equivalent of the Automatically Defined 
Functions predicted and observed in software evolution).   

 
The idea of a field programmable transistor array was 
introduced first in [11]. The FPTA is a concept design for 
hardware reconfigurable at transistor level. As both analog 
and digital CMOS circuits ultimately rely on functions 
implemented with transistors, the FPTA appears as a 
versatile platform for the synthesis of both analog and 



digital (and mixed-signal) circuits. Further, it is considered 
a more suitable platform for synthesis of analog circuitry 
than existing FPGAs or FPAAs, extending the work on 
evolving simulated circuits to evolving analog circuits 
directly on the chip. The FPTA module is an array of 
transistors interconnected by programmable switches. The 
status of the switches (ON or OFF) determines a circuit 
topology and consequently a specific response. 

Figure 1 Module of the Programmable Transistor Array 
 

Thus the topology can be considered as a function of switch 
states, and can be represented by a binary sequence, such as 
“1011… ”, where by convention one can assign 1 to a 
switch turned ON and 0 to a switch turned OFF. The FPTA 
architecture allows the implementation of bigger circuits by 
cascading FPTA modules with external wires.  

Figure 2 Schematic of a simple circuit implemented on a 
FPTA module (with leakage through the finite resistance of 

OFF  switches as dotted lines on the right figure). 
 
To offer sufficient flexibility the module has all transistor 
terminals connected via switches to expansion terminals 
(except those connected to power and ground). Issues 
related to chip expandability were treated in [11]. Figure 1 
illustrates an example of a FPTA module consisting of 8 
transistors and 24 programmable switches. In this example 
the transistors P1-P4 are PMOS and N5-N8 are NMOS, 
and the switch-based connections are in sufficient number 

to allow a majority of meaningful topologies for the given 
transistor arrangement, and yet less than the total number 
of possible connections. Programming the switches ON and 
OFF defines a circuit for which the effects of non-zero, 
finite impedance of the switches can be neglected in the 
first approximation. An example of a circuit drawn with 
this simplification is given in Figure 2.  
 

3. TEST BED FOR EVOLUTIONARY EXPERIMENTS 

An evolutionary design tool was developed to facilitate 
experiments in simulated and hardware evolution [17]. The 
tool illustrated in Figure 3 can be used for synthesis and 
optimization of new devices, circuits, or architectures for 
reconfigurable hardware. The tool proved very useful in 
testing architectures of reconfigurable HW and 
demonstrating evolution on a dedicated reconfigurable 
chip. In its current implementation the tool uses the public 
domain Parallel Genetic Algorithm package, PGAPack, a 
public domain version of SPICE 3F5 as circuit simulator 
and an evolvable hardware test bed built around LabView. 
An interface code links the GA with the simulator and with 
the hardware where potential designs are evaluated, while a 
GUI allows easy problem formulation and visualization of 
results. At each generation the GA produces a new 
population of binary chromosomes, which get converted 
into voltages in Netlists that describe candidate circuit 
designs and into configuration bits for the reconfigurable 
devices. Netlists are further simulated by SPICE and 
configuration bits are downloaded into the hardware device 
by LabView. More details about the tool are given in 
[10],[17]. 

 
Figure 3 Environment for evolutionary design. 
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After successful evolution on the simulated FPTA a test 
chip implementing the FPTA architecture was developed. 
Circuit evolutionary synthesis directly on the chip became 
possible at an expected accelerated pace of over two orders 
of magnitude compared to the simulation on the 
supercomputer (estimated ~5 seconds compared to ~20 
minutes for the experiment described). In the experimental 
simulations, the size of the transistors was fixed. The 
programmable switches were implemented with transistors, 
acting as simple T-gate switches.  
 
Each chip contains one FPTA module and was fabricated as 
a Tiny Chip through MOSIS, using 0.5-micron CMOS 
technology. The test board with four chips mounted on it is 
illustrated in Figure 4. 

 
Figure 4 A test board with four FPTA chips 

 
The hardware evaluation board is controlled by National 
Instruments data acquisition hardware and software 
(LabView) and integrated into the evolutionary design 
envionment.  

 

4. AUTOMATIC SYNTHESIS OF A NEW FUNCTION 

The following experiment performed in hardware on the 
FTPA chip illustrates the evolutionary synthesis of to 
computational circuit. The desired functionality is a 
nonlinear DC input-output characteristic (a Gaussian 
current-voltage characteristic). Four chips were 
programmed in parallel with bit-string configurations 
corresponding to four individuals of a population of 1000; 
after evaluation the chips were reprogrammed with the 
chromosome of the next four individuals, and so on until all 
1000 in one generation were tested. Evolution led to 
“Gaussian” circuit solutions within 20-30 generations. The 
current speed of evaluation is 1000 circuits in 8.25 seconds 
using the four FPTA chips in parallel; another order of 
magnitude speed-up is expected when some existing data 
acquisition bottlenecks will be solved.  
 
The following GA parameters were used:  
Population: 1000, Chromosome size: 24 bits for 1 FPTA, 
and 52 to 88 bits for 2 FPTAs (the number depends on 
interconnection schemes), Evaluation samples: 30, 
Mutation rate: 4%, Crossover rate: 70%, Tournament 
Selection: 20 individuals, Elite Strategy: 9% population 

size (88 individuals), Fitness Function: Square Root Mean 
Error. 
 
The response of four mutants is illustrated in the screen 
capture shown in Figure 5 (LabView display of the signals 
captured by the data acquisition boards). Notice the 
“mutations” in the genetic code of the solutions obtained by 
evolution (vertical chromosomes R24 to R1 reading from 
top to bottom, corresponding to switches S24 to S1 in 
Figure 1) compared with the human-designed circuit 
(rightmost vertical string). 

 
Figure 5 The “Gaussian” response of four “mutants” and 

their “genetic code” compared to the code of a human-
designed circuit. 

 
5. A SELF-HEALING EXPERIMENT 

The aim of this experiment was to test the reliability of a 
circuit design obtained by evolution and the availability of 
the electronic circuit using the on-line self-repairing 
property of the evolutionary mechanism [14]. Two FPTAs 
were cascaded interconnecting them by three external 
wires. The connection terminals P2-Drain, P4-Drain and 
N6-Source of the first FPTA were connected respectively to 
P3-Source, N5-Drain and N7-Drain. The input voltage was 
injected to the N6-Gate of the first FPTA and the output 
load was connected to the P4-Source of the second FPTA. 
Both FPTAs received a current bias at the N7-Drain 
terminal.  
 
Evolution started with a randomly initiated population of 
coded configurations, which were transformed into 
connection patterns; these were downloaded to the chip. 
The output of the generated circuits was compared with the 
desired DC Gaussian and their difference was transformed 
in a fitness function (which should in the ideal case be zero 
or very small). During the evolution the fitness function 
shows improvements of the search as illustrated in figure 
6.  The codes for circuits generating best responses (i.e. 
closest to target according to some metric) were selected, 



and suffered genetic operations, as controlled by the 
evolutionary algorithm. After looping for a number of times 
(75 generations), a circuit that best satisfied the 
requirements was found and left operational to provide the 
desired function. The performance of the chip continued to 
be monitored using the fitness function.  
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Figure 6 Fitness value monitoring the performance of the 
circuit. At generation 134, we inject a fault by removing 

one external wire between the two FPTA's. 
 
At any time if the performance decreases below a certain 
threshold (e.g. when a fault is injected), the evolution 
process restarts the search for a new circuit configuration, 
taking into account the previous circuit configurations in 
the population. In this experiment, a fault was injected by 
disconnecting one of the external connection between the 
two FPTAs used by the operational circuit. At that time a 
lowering of performance but not a complete failure was 
observed. The reason for the graceful degradation is that 
the population of circuits obtained by the evolution process 
contains mutants insensitive to faults having the same 
phenotypic effect as a genetic mutation as shown on figure 
7.  
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Figure 7 Target Gaussian response (triangle marker), the 
best individual (square marker) and its four mutants 

insensitive to faults having the same phenotypic effect as a 
genetic mutation. 

 
When the fault was injected the GA restarted with the 
population of its last run, which included the solution that 

was currently affected by fault and some of its mutants. The 
faulty part became just another component to be used: the 
evolutionary algorithm did not "know" that the part was 
supposed to do something else. While starting with a 
random population took about the same time as finding a 
solution in the first place (not shown), starting with the last 
available population led to recovery in about 1/3 of the time 
while the circuit performance recovered to 90% (shown in 
figure 8). 
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Figure 8 Target Gaussian response (triangle marker), the 
best individual (square marker) and its four mutants after 

on-line self-repaired by evolution. 
 
The experiments used a Genetic Algorithm (GA) with the 
following parameters: population 500, mutation probability: 
0.04, cross-over probability: 0.7, elite strategy: 10%, fitness 
function: mean square error. The GA obtained the Gaussian 
response before 100 generations, in about 14 minutes and 
recovered the fault in about 4 minutes. 
 

6. LESSONS LEARNED 

Speed-up by evaluations in hardware 

Hardware evaluation can produce a speed-up, especially 
when one simulates large, complex analog circuits, and the 
circuit response is rapid. One aspect that can however be 
easily overlooked is the frequency of operation for which a 
certain circuit is designed. There are limitations to 
increasing the speed of configuration and test in hardware. 
For example, the output of the Gaussian circuit on the 
FPTA started attenuation when the input ramp signals were 
exceeding 1kHz. Thus, no more than 1000 circuits per 
second (of desired low frequency response) could be 
reliably evaluated. Even though some artifacts of the 
particular FPTA design and load choice may be involved, it 
appears natural that evaluating the circuits at a different 
frequency than that of intended functioning may introduce 
errors. Evaluation in parallel is an alternative speed-up 
technique, and at least in the experiments with the FPTA 
chips no significant differences were noted between the 
implementation of  the same circuit on different chips 
 
Effect of Evolution for Fault-tolerance and self-healing 



Some insensitivity to faults that has the same influence on 
the circuit as a genetic mutation tends to arise for free when 
using evolution. Tolerance to an arbitrary and large set of 
faults can possibly be achieved by testing the individuals 
circuit in the presence of possible faults, athough it may be 
time-consuming. We observed also that defects that are 
permanent have properties that are put to use for on-line 
self-repair. It would be interesting to evaluate the 
combination of the evolutionary approach and the more 
traditional redundancy methods such as explored in the 
"embryological" development approach [13]. These initial 
experiments while illustrating the power of evolutionary 
algorithms to design digital and analog circuit and to 
maintain functionality by recovering from faults without 
explicit redundancy, only prepare the ground for further 
questions. Examples of further questions include addressing 
how can the evolutionary mechanism be protected such that 
its implementation is not itself subject to faults, or how 
should the fitness function be computed/stored. 
 

8. CONCLUSION 

This paper demonstrates two features enabled by evolvable 
hardware and which may play an important role in 
flexibility and survivability of future space hardware. These 
features are automatic synthesis of circuits to perform new 
functions and self-healing – recovery from faults.  
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